super

super is a fork / reimplementation of the glue package with a focus on efficiency and simplicity at a cost of flexibility.

Until the 0.1.0 release it should be considered ‘experimental’.

Differences from glue

Examples

library(super)

Simple concatenation

bar <- "baz"
glue("foo{bar}")
#> [1] "foobaz"

list-like input

dat <- head(cbind(car = rownames(mtcars), mtcars))
glue("{car} does {mpg} mpg.", dat)
#> [1] "Mazda RX4 does 21 mpg."           "Mazda RX4 Wag does 21 mpg."      
#> [3] "Datsun 710 does 22.8 mpg."        "Hornet 4 Drive does 21.4 mpg."   
#> [5] "Hornet Sportabout does 18.7 mpg." "Valiant does 18.1 mpg."          

Trimmed output

name <- "Fred"
age <- 50
anniversary <- as.Date("1991-10-12")
out <- glut("
    My name is {name},
    my age next year is {age},
    my anniversary is {anniversary}.
")
cat(out)
#> My name is Fred,
#> my age next year is 50,
#> my anniversary is 1991-10-12.

Partially vectorised

Over embraced arguments

head(glue("Item {LETTERS}"))
#> [1] "Item A" "Item B" "Item C" "Item D" "Item E" "Item F"

But not over input strings (yet)

glue(letters)
#> `x` must be a character vector of length <= 1.

Relative timing benchmarks

library(microbenchmark)

Simple concatenation

bar <- "baz"
bob <- 20

microbenchmark(
    sprintf    = sprintf("foo%s %d", bar, bob),
    paste0     = paste0("foo", bar, " ", bob),
    super   = super::glue("foo{bar} {bob}"),
    glue    = as.character(glue::glue_safe("foo{bar} {bob}", .trim = FALSE)),
    unit    = "relative",
    check   = "identical"
)
#> Unit: relative
#>     expr       min        lq      mean    median        uq       max neval
#>  sprintf  1.000000  1.000000  1.000000  1.000000  1.000000  1.000000   100
#>   paste0  2.744102  2.556260  2.385454  2.255191  2.144919  3.716691   100
#>    super  9.056261  8.272583  7.219189  7.233758  6.729405  4.870480   100
#>     glue 73.186933 65.297147 54.976178 55.973208 51.051714 20.928182   100

Data frame input

dat <- head(cbind(car = rownames(mtcars), mtcars))

microbenchmark(
    sprintf = with(dat, sprintf("%s does %.3g mpg.", car, mpg)),
    paste0  = with(dat, paste(car, "does", mpg, "mpg.")),
    super   = super::glue("{car} does {mpg} mpg.", dat),
    glue    = as.character(glue::glue_data(dat, "{car} does {mpg} mpg.")),
    unit    = "relative",
    check   = "identical"
)
#> Unit: relative
#>     expr       min        lq      mean    median        uq       max neval
#>  sprintf  1.000000  1.000000  1.000000  1.000000  1.000000  1.000000   100
#>   paste0  1.604422  1.554502  1.487889  1.481595  1.439779  1.519074   100
#>    super  2.717956  2.647756  2.609677  2.558538  2.491483  5.961243   100
#>     glue 17.170003 16.576945 15.515348 15.502045 14.870921 16.872639   100

Trimmed output

microbenchmark(
    super   = super::glut("
                  My name is {name},
                  my age next year is {age},
                  my anniversary is {anniversary}.
              "),
    glue    = as.character(glue::glue("
                  My name is {name},
                  my age next year is {age},
                  my anniversary is {anniversary}.
              ")),
    unit    = "relative",
    check   = "identical"
)
#> Unit: relative
#>   expr     min       lq   mean   median       uq     max neval
#>  super 1.00000 1.000000 1.0000 1.000000 1.000000 1.00000   100
#>   glue 3.97386 3.892882 3.7491 3.844322 3.833781 1.50371   100

Vectorized performance

For larger input with both glue::glue() and super::glue(), the performance becomes dominated by the internally constructed call to paste0(), hence the convergence observed below.

bar <- rep("baz", 1e5)
microbenchmark(
    sprintf    = sprintf("foo%s %d", bar, bob),
    paste0     = paste0("foo", bar, " ", bob),
    super   = super::glue("foo{bar} {bob}"),
    glue    = as.character(glue::glue_safe("foo{bar} {bob}", .trim = FALSE)),
    unit    = "relative",
    check   = "identical"
)
#> Unit: relative
#>     expr      min       lq     mean   median       uq       max neval
#>  sprintf 1.304005 1.276811 1.254459 1.243415 1.243739 1.2410410   100
#>   paste0 1.016776 1.012420 1.007998 1.002140 1.014574 0.9763665   100
#>    super 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000   100
#>     glue 1.170961 1.173403 1.164921 1.154746 1.159817 1.1573148   100