calculate_pchc()
calculates the Paretian Classification of Health Change
(PCHC) in an individuals health state between two surveys. It wraps the
eq5d::pchc()
function providing methods for EQ5D
objects.
Arguments
- pre
An
EQ5D
object for a single survey.- post
An
EQ5D
object for a single survey.- no.problems
boolean. Summarise 11111 "No change" subjects in a "No problems" group.
- by.dimension
boolean. Summarise results by each EQ-5D dimension rather than by the whole dataset.
Value
For
by.dimension = FALSE
:A data frame with columns 'Change', 'Number' and 'Percent'.
For
by.dimension = TRUE
:A data frame with columns 'Dimension', 'Change', 'Number' and 'Percent'.
Examples
data("eq5d3l_example")
dat <- as_eq5d3l(
eq5d3l_example,
respondentID = "respondentID",
surveyID = "surveyID",
mobility = "MO",
self_care = "SC",
usual = "UA",
pain = "PD",
anxiety = "AD",
vas = "vas",
drop = FALSE
)
grp1 <- subset(dat, Group == "Group1")
grp2 <- subset(dat, Group == "Group2")
calculate_pchc(grp1, grp2)
#> # A data frame: 5 × 3
#> Change Number Percent
#> <chr> <dbl> <dbl>
#> 1 No change 14 14
#> 2 Improve 59 59
#> 3 Worsen 14 14
#> 4 Mixed change 13 13
#> 5 No problems 0 0
calculate_pchc(grp1, grp2, by.dimension = TRUE)
#> # A data frame: 20 × 4
#> .Dimension Change Number Percent
#> <chr> <chr> <dbl> <dbl>
#> 1 MO No change 31 31
#> 2 MO Improve 26 26
#> 3 MO Worsen 7 7
#> 4 MO No problems 36 36
#> 5 SC No change 21 21
#> 6 SC Improve 31 31
#> 7 SC Worsen 7 7
#> 8 SC No problems 41 41
#> 9 UA No change 33 33
#> 10 UA Improve 43 43
#> 11 UA Worsen 6 6
#> 12 UA No problems 18 18
#> 13 PD No change 59 59
#> 14 PD Improve 34 34
#> 15 PD Worsen 3 3
#> 16 PD No problems 4 4
#> 17 AD No change 14 14
#> 18 AD Improve 22 22
#> 19 AD Worsen 12 12
#> 20 AD No problems 52 52