Skip to contents

qalytools provides a simple and intuitive user interface for the analysis of EQ-5D surveys. It builds upon the eq5d package to facilitate the calculation of QALY metrics and other related values across multiple surveys.

Overview

The package provides a range of functions:

Whilst this vignette provides an introduction to the core functionality of the package, a more detailed analysis example can be found in vignette("example_analysis").

The EQ5D object class

We define an EQ5D object as a table with data represented in long format that meets a few additional criteria:

  • It contains columns that represent dimensions from the EQ5D survey specification as well as a column representing the Visual Analogue Score (columns ‘mobility’, ‘self_care’, ‘usual’, ‘pain’, ‘anxiety’ and ‘vas’ in the example table below)

  • Dimension values must be whole numbers, bounded between 1 and 3 for EQ5D3L and EQ5D3Y surveys or bounded between 1 and 5 for EQ5D5L surveys

  • It contains a column that acts as a unique respondent identifier (respondentID) and another that identifying different surveys over time (`surveyID). Together these should uniquely identify a response (i.e. no combination of these should be duplicated within the given data frame).

Example of an EQ5D5L object
surveyID respondentID time_index mobility self_care usual pain anxiety vas sex age
. . . . . . . . . . .
1 1 30 3 2 2 1 1 87 Female 25
1 2 30 2 2 2 2 2 65 Male 30
1 3 30 1 3 3 1 3 76 Male 39
1 4 30 1 2 3 2 4 55 Female 60
1 5 30 2 1 4 1 1 80 Male 28
1 6 30 1 3 2 1 1 83 Male 59
. . . . . . . . . . .

In qalytools these EQ5D objects are implemented as a subclass of data frame and we provide associated methods for working with this class.

Usage

In the following examples we make use of a synthetic EQ-5D-5L data set that is included in the package

library(qalytools)
library(dplyr)
#> 
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#> 
#>     filter, lag
#> The following objects are masked from 'package:base':
#> 
#>     intersect, setdiff, setequal, union
library(ggplot2)

# Example EQ5D5L data
data("EQ5D5L_surveys")
glimpse(EQ5D5L_surveys)
#> Rows: 10,000
#> Columns: 12
#> $ surveyID     <chr> "survey01", "survey02", "survey03", "survey04", "survey05…
#> $ respondentID <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, …
#> $ sex          <chr> "Female", "Female", "Female", "Female", "Female", "Female…
#> $ age          <int> 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 30, 30, 30, 30, 3…
#> $ mobility     <int> 2, 1, 1, 1, 1, 2, 2, 1, 1, 2, 5, 5, 1, 1, 3, 1, 1, 2, 1, …
#> $ self_care    <int> 1, 4, 5, 2, 2, 1, 1, 1, 3, 1, 1, 2, 3, 3, 3, 4, 4, 3, 2, …
#> $ usual        <int> 2, 5, 2, 5, 3, 1, 2, 2, 2, 2, 1, 5, 5, 3, 5, 2, 2, 1, 3, …
#> $ pain         <int> 1, 5, 1, 2, 3, 2, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 2, 2, 3, …
#> $ anxiety      <int> 1, 3, 3, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 1, 1, 1, 2, 2, …
#> $ time_index   <dbl> 30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 30, 60, 90…
#> $ vas          <dbl> 96, 22, 61, 65, 78, 88, 85, 95, 94, 87, 73, 8, 60, 70, 67…
#> $ dummy        <lgl> TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, TRUE,…

Coercion

Before utilising methods from qalytools we must first coerce our input data to the <EQ5D5L> object class via as_eq5d5l()

dat <- as_eq5d5l(
    EQ5D5L_surveys,
    mobility = "mobility",
    self_care = "self_care",
    usual = "usual",
    pain = "pain",
    anxiety = "anxiety",
    respondentID = "respondentID",
    surveyID = "surveyID",
    vas = "vas",
)
dat
#> # EQ-5D-5L: 10,000 x 12
#>    surve…¹ respo…² sex     age mobil…³ self_…⁴ usual  pain anxiety time_…⁵   vas
#>  * <chr>     <int> <chr> <int>   <int>   <int> <int> <int>   <int>   <dbl> <dbl>
#>  1 survey…       1 Fema…    25       2       1     2     1       1      30    96
#>  2 survey…       1 Fema…    25       1       4     5     5       3      60    22
#>  3 survey…       1 Fema…    25       1       5     2     1       3      90    61
#>  4 survey…       1 Fema…    25       1       2     5     2       2     120    65
#>  5 survey…       1 Fema…    25       1       2     3     3       1     150    78
#>  6 survey…       1 Fema…    25       2       1     1     2       1     180    88
#>  7 survey…       1 Fema…    25       2       1     2     1       1     210    85
#>  8 survey…       1 Fema…    25       1       1     2     2       1     240    95
#>  9 survey…       1 Fema…    25       1       3     2     1       1     270    94
#> 10 survey…       1 Fema…    25       2       1     2     1       1     300    87
#> # … with 9,990 more rows, 1 more variable: dummy <lgl>, and abbreviated
#> #   variable names ¹​surveyID, ²​respondentID, ³​mobility, ⁴​self_care, ⁵​time_index
#> # ℹ Use `print(n = ...)` to see more rows, and `colnames()` to see all variable names

Descriptive methods

To obtain a quick overview of the data we can call summary(). By default this returns the output as a list of data frames, showing frequency counts and proportions, split by surveyID

head(summary(dat), n = 2)
#> $survey01
#> # A data frame: 6 × 6
#>   value mobility self_care usual  pain anxiety
#>   <dbl>    <dbl>     <dbl> <dbl> <dbl>   <dbl>
#> 1     1      666       608   401   320     574
#> 2     2      196       131   303   359     235
#> 3     3      114       205   166   287     150
#> 4     4       19        18    61    24      29
#> 5     5        5        38    69    10      12
#> 6    NA        0         0     0     0       0
#> 
#> $survey02
#> # A data frame: 6 × 6
#>   value mobility self_care usual  pain anxiety
#>   <dbl>    <dbl>     <dbl> <dbl> <dbl>   <dbl>
#> 1     1      396       106   142    26      47
#> 2     2      248       169   177    71      92
#> 3     3      194       214   160    93     103
#> 4     4       83       277   237   364     381
#> 5     5       79       234   284   446     377
#> 6    NA        0         0     0     0       0

Alternatively we can set the parameter tidy to TRUE and obtain the summary data in a “tidy” (long) format.

summary(dat, tidy = TRUE)
#> # A data frame: 300 × 4
#>    surveyID dimension value count
#>    <chr>    <fct>     <dbl> <dbl>
#>  1 survey01 mobility      1   666
#>  2 survey01 mobility      2   196
#>  3 survey01 mobility      3   114
#>  4 survey01 mobility      4    19
#>  5 survey01 mobility      5     5
#>  6 survey01 mobility     NA     0
#>  7 survey01 self_care     1   608
#>  8 survey01 self_care     2   131
#>  9 survey01 self_care     3   205
#> 10 survey01 self_care     4    18
#> # … with 290 more rows
#> # ℹ Use `print(n = ...)` to see more rows

It can be useful to look at the percentage of responses, across dimensions, that are not equal to one. This can be done with the calculate_limitation() function

limitation <- calculate_limitation(dat)
limitation
#> # A data frame: 50 × 3
#>    surveyID dimension without_limitation
#>    <chr>    <fct>                  <dbl>
#>  1 survey01 mobility               0.666
#>  2 survey02 mobility               0.396
#>  3 survey03 mobility               0.647
#>  4 survey04 mobility               0.637
#>  5 survey05 mobility               0.613
#>  6 survey06 mobility               0.637
#>  7 survey07 mobility               0.645
#>  8 survey08 mobility               0.651
#>  9 survey09 mobility               0.642
#> 10 survey10 mobility               0.671
#> # … with 40 more rows
#> # ℹ Use `print(n = ...)` to see more rows

ggplot(limitation, aes(x = surveyID, y = without_limitation, group = dimension)) +
    geom_line(aes(colour = dimension)) +
    theme_light() +
    scale_y_continuous(n.breaks = 10, expand = c(0.005, 0.005), limits = c(0, 1)) +
    scale_x_discrete() +
    scale_fill_discrete(name = "dimension") +
    ylab("Without limitation")

Calculating utility values

To calculate the utility values we call calculate_utility() on our EQ5D object with additional arguments specifying the countries and type we are interested in. calculate_utility() will return the desired values split by country, type, respondentID and surveyID. If you prefer to augment the utility values on top of the input object we also provide the add_utility() function.

We can obtain a list of compatible value sets (across countries and type) by passing our EQ5D object directly to the available_valuesets() function or by passing a comparable string.

For EQ5D3L inputs the type can be:

  • “TTO”, the time trade-off valuation technique;

  • “VAS”, the visual analogue scale valuation technique;

  • “RCW”, a reverse crosswalk conversion to EQ5D5L values; or

  • “DSU”, the NICE Decision Support Unit’s model that allows mappings on to EQ5D5L values accounting for both age and sex.

For EQ5D5L inputs this can be:

  • “VT”, value sets generated via a EuroQol standardised valuation study protocol;

  • “CW”, a crosswalk conversion EQ5D3L values; or

  • “DSU”, the NICE Decision Support Unit’s model that allows mappings on to EQ5D5L values accounting for both age and sex.

Note that available_valuesets()is a convenience wrapper around the eq5d::valuesets() function. It will return a data frame with columns representing the EQ5D version, the value set country and the value set type.

vs <- available_valuesets(dat)
head(vs, 10)
#> # A data frame: 10 × 3
#>    Version  Type  Country 
#>  * <chr>    <chr> <chr>   
#>  1 EQ-5D-5L VT    Belgium 
#>  2 EQ-5D-5L VT    Canada  
#>  3 EQ-5D-5L VT    China   
#>  4 EQ-5D-5L VT    Denmark 
#>  5 EQ-5D-5L VT    Egypt   
#>  6 EQ-5D-5L VT    England 
#>  7 EQ-5D-5L VT    Ethiopia
#>  8 EQ-5D-5L VT    France  
#>  9 EQ-5D-5L VT    Germany 
#> 10 EQ-5D-5L VT    HongKong

# comparable character values will also give the same result
identical(vs, available_valuesets("eq5d5l"))
#> [1] TRUE

# cross walk comparison
vs <- filter(vs, Country %in% c("England", "UK"), Type %in% c("VT", "CW"))
util <- calculate_utility(dat, type = vs$Type, country = vs$Country)

# plot the results
util$fill <- paste(util$.utility_country, util$.utility_type)
ggplot(util, aes(x = surveyID, y = .value, fill = fill)) +
    geom_boxplot(lwd = 1, outlier.shape = 4) +
    stat_summary(
        mapping = aes(group = .utility_country),
        fun = mean,
        geom = "point",
        position = position_dodge(width = 0.75),
        shape = 21,
        color = "black",
        fill = "white"
    ) +
    theme_light() +
    geom_hline(yintercept = 0, linetype = "longdash", size = 0.6, color = "grey30") +
    scale_y_continuous(n.breaks = 10, expand = c(0.005, 0.005)) +
    scale_x_discrete(name = "value set")

For further details about the available value sets, consult the documentation of the wrapped eq5d package via vignette(topic = "eq5d", package = "eq5d").

QALY calculations

Quality of life years can be calculated directly from utility values. By default, two different metrics are provided. Firstly, a “raw” value which is simply the scaled area under the utility curve and, secondly, a value which represents the loss from full health.

qalys <-
    dat |>
    add_utility(type = "VT", country = c("Denmark", "France")) |>
    calculate_qalys(time_index = "time_index")

filter(qalys, .qaly=="raw")
#> # A data frame: 2,000 × 5
#>    respondentID .utility_type .utility_country .qaly .value
#>           <int> <chr>         <chr>            <chr>  <dbl>
#>  1            1 VT            Denmark          raw    0.544
#>  2            1 VT            France           raw    0.573
#>  3            2 VT            Denmark          raw    0.487
#>  4            2 VT            France           raw    0.503
#>  5            3 VT            Denmark          raw    0.530
#>  6            3 VT            France           raw    0.577
#>  7            4 VT            Denmark          raw    0.276
#>  8            4 VT            France           raw    0.430
#>  9            5 VT            Denmark          raw    0.506
#> 10            5 VT            France           raw    0.575
#> # … with 1,990 more rows
#> # ℹ Use `print(n = ...)` to see more rows
filter(qalys, .qaly=="loss_vs_fullhealth")
#> # A data frame: 2,000 × 5
#>    respondentID .utility_type .utility_country .qaly              .value
#>           <int> <chr>         <chr>            <chr>               <dbl>
#>  1            1 VT            Denmark          loss_vs_fullhealth  0.195
#>  2            1 VT            France           loss_vs_fullhealth  0.166
#>  3            2 VT            Denmark          loss_vs_fullhealth  0.252
#>  4            2 VT            France           loss_vs_fullhealth  0.237
#>  5            3 VT            Denmark          loss_vs_fullhealth  0.210
#>  6            3 VT            France           loss_vs_fullhealth  0.162
#>  7            4 VT            Denmark          loss_vs_fullhealth  0.463
#>  8            4 VT            France           loss_vs_fullhealth  0.310
#>  9            5 VT            Denmark          loss_vs_fullhealth  0.233
#> 10            5 VT            France           loss_vs_fullhealth  0.164
#> # … with 1,990 more rows
#> # ℹ Use `print(n = ...)` to see more rows

calculate_qalys() also allows us to calculate the loss from a specified baseline in one of two ways. Firstly, a character string baseline_survey argument can be placed which matches a survey present in the utility data. If the argument is passed as such then the utility values from the specified survey are used to calculate the loss. Note that the survey is still included in the raw, unadjusted calculation, prior to the calculation of loss.

# Reload the example data and combine with some baseline measurements
data("EQ5D5L_surveys")
dat <-
    EQ5D5L_surveys |>
    as_eq5d5l(
        mobility = "mobility",
        self_care = "self_care",
        usual = "usual",
        pain = "pain",
        anxiety = "anxiety",
        respondentID = "respondentID",
        surveyID = "surveyID",
        vas = "vas"
    )

add_utility(dat, type = "VT", country = c("Denmark", "France")) |>
    calculate_qalys(baseline_survey = "survey01", time_index = "time_index") |>
    filter(.qaly == "loss_vs_baseline")
#> # A data frame: 2,000 × 5
#>    respondentID .utility_country .utility_type .qaly              .value
#>           <int> <chr>            <chr>         <chr>               <dbl>
#>  1            1 Denmark          VT            loss_vs_baseline  0.141  
#>  2            1 France           VT            loss_vs_baseline  0.114  
#>  3            2 Denmark          VT            loss_vs_baseline  0.0892 
#>  4            2 France           VT            loss_vs_baseline -0.00370
#>  5            3 Denmark          VT            loss_vs_baseline  0.0965 
#>  6            3 France           VT            loss_vs_baseline  0.106  
#>  7            4 Denmark          VT            loss_vs_baseline  0.175  
#>  8            4 France           VT            loss_vs_baseline  0.0450 
#>  9            5 Denmark          VT            loss_vs_baseline  0.142  
#> 10            5 France           VT            loss_vs_baseline  0.0915 
#> # … with 1,990 more rows
#> # ℹ Use `print(n = ...)` to see more rows

Alternatively the baseline_survey argument can be specified as a data frame with a column corresponding to the respondentID and another representing the associated utility. Optionally columns corresponding to the utility country and utility type can be included to allow more granular comparisons. Note that for this specification of baseline, it is not included in the unadjusted, raw, calculation.

split_dat <- split(dat, dat$surveyID=="survey01")
surveys <- split_dat[[1]]
baseline <- split_dat[[2]]
utility_dat <- add_utility(
    surveys,
    type = "VT",
    country = c("Denmark", "France")
)
baseline_utility <-
    baseline |>
    add_utility(type = "VT", country = c("Denmark", "France")) |>
    select(respondentID,.utility_country,.utility_type,.value)

calculate_qalys(utility_dat, baseline_survey = baseline_utility, time_index = "time_index") |>
    filter(.qaly == "loss_vs_baseline")
#> # A data frame: 2,000 × 5
#>    respondentID .utility_country .utility_type .qaly             .value
#>           <int> <chr>            <chr>         <chr>              <dbl>
#>  1            1 Denmark          VT            loss_vs_baseline  0.101 
#>  2            1 France           VT            loss_vs_baseline  0.0796
#>  3            2 Denmark          VT            loss_vs_baseline  0.0556
#>  4            2 France           VT            loss_vs_baseline -0.0341
#>  5            3 Denmark          VT            loss_vs_baseline  0.0672
#>  6            3 France           VT            loss_vs_baseline  0.0788
#>  7            4 Denmark          VT            loss_vs_baseline  0.145 
#>  8            4 France           VT            loss_vs_baseline  0.0182
#>  9            5 Denmark          VT            loss_vs_baseline  0.0959
#> 10            5 France           VT            loss_vs_baseline  0.0553
#> # … with 1,990 more rows
#> # ℹ Use `print(n = ...)` to see more rows

Other functionality

Paretian Classification of Health Change (PCHC)

data("eq5d3l_example")
dat <- as_eq5d3l(
    eq5d3l_example,
    respondentID = "respondentID",
    surveyID = "surveyID",
    mobility = "MO",
    self_care = "SC",
    usual = "UA",
    pain = "PD",
    anxiety = "AD",
    vas = "vas",
    drop = FALSE # ensure we do not drop additional columns
)
grp1 <- filter(dat, Group == "Group1")
grp2 <- filter(dat, Group == "Group2")
calculate_pchc(grp1, grp2)
#> # A data frame: 5 × 3
#>   Change       Number Percent
#>   <chr>         <dbl>   <dbl>
#> 1 No change        14      14
#> 2 Improve          59      59
#> 3 Worsen           14      14
#> 4 Mixed change     13      13
#> 5 No problems       0       0
calculate_pchc(grp1, grp2, by.dimension = TRUE)
#> # A data frame: 20 × 4
#>    .Dimension Change      Number Percent
#>    <chr>      <chr>        <dbl>   <dbl>
#>  1 MO         No change       31      31
#>  2 MO         Improve         26      26
#>  3 MO         Worsen           7       7
#>  4 MO         No problems     36      36
#>  5 SC         No change       21      21
#>  6 SC         Improve         31      31
#>  7 SC         Worsen           7       7
#>  8 SC         No problems     41      41
#>  9 UA         No change       33      33
#> 10 UA         Improve         43      43
#> 11 UA         Worsen           6       6
#> 12 UA         No problems     18      18
#> 13 PD         No change       59      59
#> 14 PD         Improve         34      34
#> 15 PD         Worsen           3       3
#> 16 PD         No problems      4       4
#> 17 AD         No change       14      14
#> 18 AD         Improve         22      22
#> 19 AD         Worsen          12      12
#> 20 AD         No problems     52      52